Una nueva hipótesis para los científicos del MIT sobre uno de los mayores misterios de la ciencia

Hace unos 2.300 millones de años, el oxígeno comenzó a acumularse en la atmósfera y, finalmente, alcanzó los niveles necesarios para la vida que respiramos hoy. Una nueva hipótesis propuesta por científicos del MIT sugiere un mecanismo de cómo podría suceder esto. En la foto hay ejemplos de organismos antiguos. Crédito: Noticias del MIT

Los microbios y los minerales pueden haber liberado el oxígeno de la Tierra

Los científicos proponen un nuevo mecanismo por el cual se puede formar oxígeno por primera vez en la atmósfera.

Durante los primeros 2 mil millones de años de la historia de la Tierra, apenas había oxígeno en el aire. Si bien algunos microbios realizaban la fotosíntesis en la última parte de este período, el oxígeno aún no se había acumulado a niveles que afectarían a la biosfera global.

Pero hace unos 2.300 millones de años, este equilibrio estable y bajo en oxígeno cambió y el oxígeno comenzó a acumularse en la atmósfera, alcanzando finalmente los niveles necesarios para la vida que respiramos hoy. Esta fuga rápida se conoce como el Gran Evento de Oxigenación, o GOE. Lo que desencadenó el evento y sacó al planeta de su bajo nivel de oxígeno es uno de los mayores misterios de la ciencia.

Una nueva hipótesis, propuesta por[{» attribute=»»>MIT scientists, suggests that oxygen finally started accumulating in the atmosphere thanks to interactions between certain marine microbes and minerals in ocean sediments. These interactions helped prevent oxygen from being consumed, setting off a self-amplifying process where more and more oxygen was made available to accumulate in the atmosphere.

READ  ExxonMobil desea construir centros de almacenamiento de carbono en el sudeste asiático, similar al proyecto de Houston.

The scientists have laid out their hypothesis using mathematical and evolutionary analyses, showing that there were indeed microbes that existed before the GOE and evolved the ability to interact with sediment in the way that the researchers have proposed.

Their study, appearing today in Nature Communications, is the first to connect the co-evolution of microbes and minerals to Earth’s oxygenation.

“Probably the most important biogeochemical change in the history of the planet was oxygenation of the atmosphere,” says study author Daniel Rothman, professor of geophysics in MIT’s Department of Earth, Atmospheric, and Planetary Sciences (EAPS). “We show how the interactions of microbes, minerals, and the geochemical environment acted in concert to increase oxygen in the atmosphere.”

The study’s co-authors include lead author Haitao Shang, a former MIT graduate student, and Gregory Fournier, associate professor of geobiology in EAPS.

A step up

Today’s oxygen levels in the atmosphere are a stable balance between processes that produce oxygen and those that consume it. Prior to the GOE, the atmosphere maintained a different kind of equilibrium, with producers and consumers of oxygen in balance, but in a way that didn’t leave much extra oxygen for the atmosphere.

What could have pushed the planet out of one stable, oxygen-deficient state to another stable, oxygen-rich state?

“If you look at Earth’s history, it appears there were two jumps, where you went from a steady state of low oxygen to a steady state of much higher oxygen, once in the Paleoproterozoic, once in the Neoproterozoic,” Fournier notes. “These jumps couldn’t have been because of a gradual increase in excess oxygen. There had to have been some feedback loop that caused this step-change in stability.”

READ  Las ranas con colmillos más pequeñas del mundo fueron encontradas en Indonesia

He and his colleagues wondered whether such a positive feedback loop could have come from a process in the ocean that made some organic carbon unavailable to its consumers. Organic carbon is mainly consumed through oxidation, usually accompanied by the consumption of oxygen — a process by which microbes in the ocean use oxygen to break down organic matter, such as detritus that has settled in sediment. The team wondered: Could there have been some process by which the presence of oxygen stimulated its further accumulation?

Shang and Rothman worked out a mathematical model that made the following prediction: If microbes possessed the ability to only partially oxidize organic matter, the partially-oxidized matter, or “POOM,” would effectively become “sticky,” and chemically bind to minerals in sediment in a way that would protect the material from further oxidation. The oxygen that would otherwise have been consumed to fully degrade the material would instead be free to build up in the atmosphere. This process, they found, could serve as a positive feedback, providing a natural pump to push the atmosphere into a new, high-oxygen equilibrium.

“That led us to ask, is there a microbial metabolism out there that produced POOM?” Fourier says.

In the genes

To answer this, the team searched through the scientific literature and identified a group of microbes that partially oxidizes organic matter in the deep ocean today. These microbes belong to the bacterial group SAR202, and their partial oxidation is carried out through an enzyme, Baeyer-Villiger monooxygenase, or BVMO.

The team carried out a phylogenetic analysis to see how far back the microbe, and the gene for the enzyme, could be traced. They found that the bacteria did indeed have ancestors dating back before the GOE, and that the gene for the enzyme could be traced across various microbial species, as far back as pre-GOE times.

READ  “Informe sobre el impacto en la salud: el convoy de la Cruz Roja Rumana ofrece 2.603 consultas gratuitas en Maramures a 671 personas, entre ellas 315 rumanos y 313 ciudadanos ucranianos” - Rumania

What’s more, they found that the gene’s diversification, or the number of species that acquired the gene, increased significantly during times when the atmosphere experienced spikes in oxygenation, including once during the GOE’s Paleoproterozoic, and again in the Neoproterozoic.

“We found some temporal correlations between diversification of POOM-producing genes, and the oxygen levels in the atmosphere,” Shang says. “That supports our overall theory.”

To confirm this hypothesis will require far more follow-up, from experiments in the lab to surveys in the field, and everything in between. With their new study, the team has introduced a new suspect in the age-old case of what oxygenated Earth’s atmosphere.

“Proposing a novel method, and showing evidence for its plausibility, is the first but important step,” Fournier says. “We’ve identified this as a theory worthy of study.”

Reference: “Oxidative metabolisms catalyzed Earth’s oxygenation” by Haitao Shang, Daniel H. Rothman and Gregory P. Fournier, 14 March 2022, Nature Communications.
DOI: 10.1038/s41467-022-28996-0

This work was supported in part by the mTerra Catalyst Fund and the National Science Foundation.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *